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ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is a rising method of immunotherapy for treating cancer,

especially in B cell acute lymphoblastic leukemia (ALL). However, even with the same CAR

modifications, patient responses range from complete remission to relapse and no response. Because

many negative responses are caused by T cell shortcomings instead of factors in the tumor

microenvironment, genetic engineering of the CAR as well as gene enhancement and knockout can

improve CAR T efficacy. Single-cell profiling allows a closer look at specialized functions by T cell

subtypes instead of generalizing the entire CAR T population. Here, I use single-cell transcriptomic and

proteomic data of 59,116 cells from 7 B-ALL patients and 31,032 cells from 4 healthy donors to show the

differentially expressed genes (DEGs) between different patient responses. By using DEG and gene

ontology enrichment analysis, a subset of no response patient cells were found to have decreased key

CAR T functions such as cytotoxic, helper, stimulatory, and cytokine activities. These cells had elevated

Treg pathways, showing higher susceptibility to apoptosis but proliferating greater than other T cell

subtypes in the short-term, thus decreasing the long-term duration of CAR T and likely contributing to the

lack of therapeutic response in vivo. These findings further our understanding of CAR T cell subtypes and

could provide a way on modifying genes and pathways of T cells to improve upon CAR T efficacy and

persistence in B-ALL, as well as shedding light on applications to other types of cancer.
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INTRODUCTION

Adoptive T cell transfer (ACT) is the use of lymphocytes to combat tumors and reduce the effects of

rejection from organ allografts (Billingham et al. 1954, Mitchinson 1955). One emerging type of ACT

developed for cancer therapy is chimeric antigen receptor (CAR) T cells, which uses the substitution of a

single-chain variable fragment (scFv) with a TCRς chain from the regular double-chain T cell receptors

(TCRs) (Zhang et al. 2017, June and Sadelain 2018). While TCRs have an antigen-specific response

based on their variable antigen-binding site, the scFv of all CAR T cells target the same set of

tumor-specific proteins, and the single chain facilitates genetic engineering and modifications.

Figure 1: Design of a Chimeric Antigen Receptor (CAR).

The scFv that binds to the tumor-specific antigen replaces the antigen-binding site of a regular TCR consisting of

alpha and beta chains. Into the membrane, several costimulatory domains such as CD28 can be added to accurately

target tumor cells (Figure adapted from June and Sadelain 2018).

An ACT that uses TCR engineering instead of CAR recognizes molecules bound to the MHC of

antigen-presenting cells or tumors; however, this method is known to target the body’s own cells, and

cannot avoid toxicity while still having effective clinical treatment (He et al. 2019, Dhatchinamoorthy et

al. 2021, Wang and Cao 2020). CAR T therapy is effective because it does not target tumors through the

major histocompatibility complex (MHC) of cells, unlike other ACT treatments like TCR, reducing

off-tumor targeting (Garrido et al. 2016). Once activated, CAR T cells proliferate and activate non-CAR

T cells for tumor responses, which overcomes the autoimmunity challenges of cancer treatment (Finn

2008, June et al. 2017). Targeting the CD19 surface molecule on tumor cells has been effective in treating

2



B cell malignancies, especially B cell acute lymphoblastic leukemia (ALL) (Brentjens et al. 2013, Grupp

et al. 2013), due to the unique characteristic of CD19 being only found on cells of the B cell lineage

(LeBien and Tedder 2008).

While the recent FDA commercial approvals of CAR T cell therapy show successes and efficacy in

treating cancer (Sengsayadeth et al. 2021, Le et al. 2018, Lin et al. 2022), several limitations still pose

problems in treating a greater number of patients successfully. There are four main types of issues: first,

CAR T cells may not proliferate properly once transferred back into the patient’s body, resulting in

short-term or no response. Second, tumors show adaptive resistance such as CD19 loss, which is present

in up to 28% of acute leukemia cases (June et al. 2018). Third, toxicities arise from immunotherapy

because of the number of immune cells activated, which can result in severe cytokine release syndrome

(CRS) or neurotoxicity (Davila et al. 2014, Lee et al. 2014, Teachey et al. 2016). Last, CAR T therapy is

currently limited to targeting cancers of the B cell lineage and cannot target solid tumors, though new

cellular engineering with adding co-stimulatory molecules and secondary target molecules has widened

the possibilities (June and Sadelain 2018).

Such limitations result in various patient responses, ranging from no response, relapse, and complete

remission. CAR T cell therapy, once fully developed, potentially can provide a cheaper alternative to

high-cost therapies and even introduce an off-the-shelf treatment for cancer, as scFv engineering stays

constant between different T cells (Zakrzewski et al. 2008, Torikai et al. 2012). By finding the varying

pathways that differ between no response patients and complete remission patients, the discovery of

cellular functions that will improve the efficacy of CAR T treatment will contribute to the further

improvement of genetic engineering in CAR and cellular modification. In this research, I analyze

differentially expressed genes (DEGs) and proteins between various patient CAR T cell samples and T

cell subtypes within these samples in order to find markers of complete remission and no response

patients.

METHODS

Patient samples

Samples of pediatric patients with resistant or refractory B-ALL were collected from two separate trials at

the University of Pennsylvania and the Children’s Hospital of Pennsylvania. One set of samples were

collected from trials aimed to determine the safety and feasibility of CART-19 cell therapy and the

proliferation and duration in vivo (ClinicalTrials.gov, NCT01626495). Another set of samples were
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obtained from a pilot trial on the effect of tocilizumab on the risk of CART-19 associated cytokine release

syndrome (ClinicalTrials.gov, NCT02906371). All laboratory operations involving the collection and

analysis of samples followed the International Conference on Harmonization Guidelines for Good

Clinical Practice, and ethical standards were ensured.

Single-cell multiomics profiling

Protocols follow those described in Bai et al. 2022. Patient T cell samples were transduced using a

lentiviral vector containing a CD19-specific CAR with 4-1BB/CD3 transgene. An in vitro coculture assay

was created through the NIH3T3 mouse fibroblast line. The CD19 environment was NIH3T3 cells

transduced with human CD19 (CD19-3T3), and the negative control expressed mesothelin (MSLN-3T3).

CTL019 cells were cocultured in the CD19-3T3 and MSLN-3T3 cells to produce stimulated and control

samples. CAR+ cells were stained for CITE-seq, prepared for scRNA-seq, then sequenced. A unique

molecular identifier (UMI) count matrix filtered mouse cells and low-quality mRNAs from the sequenced

data.

Differentially expressed gene (DEG) analysis

The Seurat v4.0 software was used to perform integration, QC, and differential expression analysis of the

multimodal CITE-seq data from Bai et al. 2022. The integration of different samples followed the

standard Seurat workflow using anchor points and canonical correlation analysis (CCA) (Stuart et al.

2019). To reduce the memory usage, reverse PCA was done beforehand, and the integration using the

SCTransform function involved the first 30 dimensions. Default numbers were used for CCA dimensions

and anchor neighbors. QC was performed with a lower and upper bound for mRNA expression and the

fraction of mitochondrial genome. The ADT assay was normalized, and the integrated data were

visualized in two dimensions using UMAP. Top markers for each cluster were found using the

FindMarkers function.

GO enrichment analysis

The ShinyGO 0.76 gene enrichment analysis tool (http://bioinformatics.sdstate.edu/go/) was used in

determining GO terms and enriched pathways. Top markers for various states were exported from Seurat

FindMarkers and entered into ShinyGo to produce a fold enrichment lollipop chart.
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High Performance Computing Clusters

The Yale University High Performance Computing (HPC) clusters were used to accommodate for the

high memory usage of the integration and analysis. The general partition from the Ruddle cluster of the

Yale Center for Genome Analysis was used to store patient data and run analysis through interactive

RStudio Server. With memory reduction algorithms, the environment required approximately 100 to 115

gigabytes along with a single node and core.

RESULTS

The data analysis was performed in three phases: an analysis of the 4 healthy donor samples, the 7 patient

samples, and a fully integrated dataset of both healthy donors and patients.

Healthy donor data shows divergence of stimulated and basal state cells through UMAP clustering

The dataset of the healthy donors’ single-cell multiomics profile, consisting of 31032 cells with 36601

RNA features, was first filtered through quality control (QC) to remove low-quality cells, empty droplets,

or doublets and multiplets from the scRNA-seq protocol. Low-quality data from these cells may affect

analysis due to artificially high or low gene expression. Lower and upper bounds on the number of

features, total count of the RNA expression, and percentage of mitochondrial genome for the filtered cells

was determined through a violin plot visualization (Figure 1). Cells with 200 to 5000 unique features and

a mitochondrial genome percentage below 10% were selected for analysis, resulting in 25896 cells, with

5136 cells being filtered.
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Figure 1: Violin plots in determining Quality Control (QC) of the healthy donor dataset (n=31032).

Left: the number of unique features (RNA) found in each cell.

Middle: the total number of RNA counts from each cell, generally correlating with the number of features.

Right: The percentage of mitochondrial genome comprising the feature count.

The filtered dataset was then visualized after log normalization and scaling, which initially yielded 15

clusters total. Because there are a limited number of T cell subsets that can be identified, different

resolutions were tried out to yield an optimal number of clusters, with res=0.4 creating 11 clusters.

To show the differences between basal state (BA) and stimulated (CD) cell conditions from the overall

UMAP clustering, the dataset was divided into their sub states based on their hashtag oligonucleotide

(HTO) identification. The proteomic data consisted of two types of proteins: antigen-derived tags (ADTs)

recording the expression of the cell surface protein levels and hashtag oligonucleotides (HTOs)

identifying the sample type of the cells. ADT and HTO expression data were normalized through centered

log-ratio transformation. Through HTO demultiplexing, cells could be separated based on their HTO

index. From the 4 healthy donors, HTO indices 1-4 corresponded to CD cells and indices 5-8 to BA cells

(Figure 2). Highlighting each sample type on the overall UMAP showed that the difference between

stimulated and basal states was much greater than the difference between individual donors (Figure 3).

Clusters 1 and 10 contain a mostly even mix of all 8 samples, indicating that it was a common subset of

all CAR T cells. Basal state cells were most prominent in clusters 0, 3, and 7, and stimulated cells were in

clusters 2, 4, 5, 6, 8, and 9, suggesting that CAR T cells divided into more diverse and distinct functions

once in presence of the target CD19 proteins.
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Figure 2: Structure of the HD dataset through HTO demultiplexing, each highlighted as locations on the

overall UMAP.

HTO-1 through HTO-4 were cells co-cultured with CD19-expressing 3T3 cells, while HTO-5 through HTO-8 were

cells co-cultured with mesothelin-expressing 3T3 cells. HTO-1 and HTO-5 were from the same donor, HTO-2 and

HTO-6 from a second donor, HTO-3 and HTO-7 from a third, and HTO-4 and HTO-8 from a fourth, for 4 donors in

total.

Figure 3: Localization of stimulated and basal-state donor samples onto the overall clustering.

Left: original UMAP visualization, with 11 clusters.

Right: HTO tags mapped onto the same clustering, with HTO-5 through HTO-8 mainly on the left side of the

UMAP, and HTO-1 through HTO-4 on the right, and clusters 1 and 10 being a mix of every donor.
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HTO demultiplexing of healthy donor data reveals activation and regulation of key protein and

transcriptional markers

HTO demultiplexing revealed important insights into ADT and RNA expression analysis by showing

differential expression of genes and proteins between the two stimulation states. Of the 17 cell surface

proteins whose levels were recorded, 3 showed prominent differences between stimulated and basal

conditions (Figure 4a). CD69 and LAG-3 were expressed highly in stimulated cells, and CD62L was

expressed highly in basal state cells. The CD4 and CD8 proteins, markers for helper and cytotoxic T cells

respectively, showed similar counts across both stimulation states and individual donors (Figure 4b).

Figure 4: Differential expression of notable ADT markers between stimulated and basal state cells.

(a) Expression levels of CD69, LAG-3, and CD62L by each HTO tag. CD69 and LAG-3 are more highly expressed

in HTO-1 through HTO-4, and CD62L is more highly expressed in HTO-5 through HTO-8.

(b) Expression levels of CD4 and CD8 by HTO index.

Key immunological markers of T cell subtypes were also shown to differ between stimulated and basal

state cells (Figure 5a). Overall, stimulated cells had higher cytotoxic and helper activity, as seen most

prominently in the granzyme gene GZMB and T cell type 1 helper (Th1) markers IFNG and IL13. In

stimulatory features, CSF2 showed a notably higher expression in stimulated cells (Figure 5b), despite

some previous literature observing that CAR T activation could be independent of CSF2 expression (Bai

et al. 2021). On the other hand, basal state cells had generally higher regulatory activities, especially with

the feature TGFB1. Chemokine activity varied between states, with CCL3, XCL1, and XCL2 levels higher

on stimulated cells, CCL5 higher on basal state cells, and CC4, CXCL10, and CCL20 similarly expressed

across all donors.
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Figure 5: Key immunological genes from literature defining specific subtypes of T cells.

(a) The expression levels of each sample, by HTO index, are graphed in a stacked violin plot. The different subtypes

of T cells shown are cytotoxic, type 1 and 2 helpers, stimulatory, regulatory, inflammatory, and chemokine-related T

cells.

(b) Detailed view of CSF2 expression from (a).

GO analysis of complete remission and no response patient data show distinct clustering corresponding

to subtypes of CAR T cells with differing functions and pathways

The activation and regulatory markers expressed under healthy conditions would uncover differences in

CAR T activation between complete remission (CR) and no response (NR) patients. In total, stimulated

and basal state samples from 7 patients, consisting of 4 CR patients and 3 NR patients, were used in the

patient response analysis. 70305 cells were integrated, and cells with less than 300 features, more than

6000 features, or a percent mitochondrial genome greater than 10% were filtered, leaving a subset of

59116 cells after QC. When separated into further subsets, UMAP clustering showed a greater divergence

between stimulated conditions (CD vs BA) than compared to patient responses (CR vs NR) (Figure 6).

Stimulated cells were concentrated in clusters 1 and 10, while basal state cells were most present in

clusters 0 and 4 (Figure 6b). On the other hand, the two types of patient cells were more evenly

distributed throughout most clusters, with the exception of cluster 10 with a high proportion of NR cells

(Figure 6c).

9



Figure 6: UMAP plot of the patient dataset highlighted in various forms.

(a) Original clustering showing 11 different clusters.

(b) Basal (BA) and stimulated (CD) cells highlighted onto the UMAP.

(c) Complete remission (CR) and no response (NR) patient cells highlighted.

Clustering separately by CD and BA states provided a greater insight into the molecular pathways of

subtypes of the CAR T cell population. The stimulated subset yielded 10 clusters, while the basal state

yielded 12 (Figure 7ab). Upon GO analysis, the stimulated subset clusters 1 and 2, the clusters with the

greatest CR/HD proportion, had high expression of common CAR T pathways involving immune cell

differentiation and activation (Figure 7c). CD cluster 8, with a >90% NR proportion, showed regular

biological and non-CAR T specific pathways involving protein targeting, localization, and endoplasmic

reticulum-related activities (Figure 7d). BA clusters 8 and 10 with also the greatest CR/HD proportion

showed similarity to CD clusters 1 and 2, with cluster 8 expressing pathways in apoptotic signaling and

cell death, and cluster 10 in immune cell differentiation and activation. BA cluster 11 was similar to CD

cluster 8, with protein targeting, localization, and ER-related pathways, indicating that this subset of NR

cells kept the same functions upon stimulation.
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Figure 7: Cluster analysis of patient data after separation of stimulation states.

(a) Proportion of patient response types in the 10 clusters (0-10, res=0.3) of CD cells. CR cells (light blue) dominate

NR cells (navy) in all clusters but cluster 8.

(b) Proportion of patient response types in the 12 clusters (0-12, res=0.3) of BA cells. NR dominates cluster 11.

(c) GO analysis showing pathways of cluster 1 of the CD subset, most notably showing T cell differentiation,

activation, and production and response to cytokines and stimulus.

(d) GO analysis showing pathways of cluster 8 of the CD subset, showing protein localization, targeting to the ER,

and cell projection organization. Pathways such as viral processes and generation of neurons can be disregarded due

to the limitations of the GO enrichment analysis software.

Integration of healthy donor and patient data increases sample size and reveals differential expression in

key immunological genes and pathways

To further analyze the markers distinguishing CR and NR patient response, the healthy donor data was

integrated into the patient dataset. Because HD features showed similar expression to CR patients, this

was done to make the sample size larger. The UMAP showed less divergent clustering than UMAPs from

the HD or patient data each, with 13 clusters total (Figure 8a). Analysis of the proportions of CR, HD, and
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NR samples in each cluster showed that cluster 3 had the lowest NR percentage and 12 the highest, which

corresponded to the UMAP visualization of clusters 3 and 12 diverging the most from the rest of the

clusters (Figure 8b).

Figure 8: UMAP of integrated data and proportions of CR/HD/NR cells in the clustering (n=85012).

(a) 13 clusters of the fully integrated dataset, with 50 dimensions of reverse PCA performed before the integration,

then using 30 dimensions for the final projection. Clusters 3 and 12 are circled in red.

(b) Proportions of the CR (light blue), HD (navy), and NR (green) cells within the 13 unsupervised clusters. Clusters

3 and 12 are boxed in red, corresponding to the circles in (a).

Dividing the dataset into basal state and stimulated conditions yielded 12 and 13 clusters, respectively

(Figure 9). BA clusters 7 and 11 were majority CR-based; cluster 7’s pathways included T cell, leukocyte,

and lymphocyte activation, as well as cell cycle activities. BA cluster 11 showed high expression of cell

migration, locomotion, differentiation, and development pathways. BA cluster 12 was mostly NR and,

similar to the patient data, showed activities in protein targeting, localization, and ER-related pathways. In

the CD subset, cluster 10 was analogous to BA cluster 12, with having a majority NR proportion and

showing regular biological activities not related to CAR T functions; it also had pathways related to the

mRNA catabolic production.

Most other clusters in the CD subset had very low percentages of NR and high CR and HD cells. There

were several defining characteristics of each of these clusters. Clusters 0 and 3 were both related to

lymphocyte activation; cluster 0 specifically had high levels of cytokine regulation and the negative

regulation of apoptosis. Cluster 5 also showed high cytokine production and proliferation activities.

Clusters 3, 6, and 9 were all related to cell-cell adhesion, which is a necessary step in immune cell

activation by CAR T cells. Cluster 6 was shown to mainly target CD4+ T helper cells. Finally, clusters 1
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and 11 were related to pathways in mitosis, cell division, and the cell cycle, indicating proliferation;

cluster 11 also had negative regulation of transcriptional activities.

Figure 9: Proportions of CR (light blue), HD (navy), and NR (green) cells within the clustering of BA and CD

cells.

Analogous to Figure 7, but with the fully integrated dataset instead of solely from the patient data. BA cluster 12

shows the highest NR cell proportion, similar to CD cluster 10. CD cells show a high percentage of HD cells overall.

(a) Basal state cell subset, with 13 clusters total.

(b) Stimulated cell subset, with 12 clusters total.

Specific key immunological gene markers, in addition to these overarching cellular pathways, were

analyzed through the unsupervised clusters (Figure 10). In BA cells, cluster 7 showed the highest cytokine

production—aligning with the previous finding of a high proportion of CR cells in BA cluster 7. In

stimulated cells, cluster 3 showed the highest cytokine production, especially with chemokines such as

CCL3 and CCL4. CD cluster 10 notably showed a lack of overall cytokine production, also in line with

the high proportion of NR cells in cluster 10. Thus, I saw a correlation of most cytokine production and

sensitivity and a positive patient response.
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Figure 10: Notable RNA markers through cytokine and other immunological gene expression levels.

(a) Basal state cell subset. Cluster 7 is boxed in red, with a notably higher expression of most labeled genes,

including cytotoxic, helper, stimulatory, and chemokine-related T cell markers.

(b) Stimulated cell subset. Clusters 3 and 10 are boxed in red. Cluster 3 show higher expression of

chemokine-related activities, while cluster 10 show a lack of expression across all T cell subtype markers.

The results of pathways identified from individual unsupervised clusters were confirmed with the markers

defining the 4 main categories of samples: basal state CR/HD, stimulated CR/HD, basal state NR, and

stimulated NR (Figure 11). Most notably, the markers of CR/HD cells were much greater in number than

markers of NR cells. For GO analysis, the top 500 markers for CR/HD sample subsets were used. Basal

state CR/HD cells were involved in regulation of cell migration and cytokine production, while stimulated

CR/HD cells worked in immune cell activation, cell migration, and cell motility (Figure 11ab). Both basal

state and stimulated NR cells showed very similar activities in protein translation, localization, and ER

targeting (Figure 11cd).
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Figure 11: GO analysis of the overall grouping of integrated data.

(a) BA and CR/HD pathways, taken from the top 500 markers of the subset. Boxed in red shows the most recurring

pathways noted in the list, including migration, cytokine production, and stimulus responding.

(b) CD and CR/HD pathways, taken from the top 500 markers similar to (a). Most notable pathways include cell

activation, cell-cell adhesion, cell migration, motility, and localization.

(c) BA and NR pathways, from all key markers (340) of the subset compared to the rest of the cell dataset. Most

notable pathways include protein targeting to ER, protein localization, and translational activities

(d) CD and NR pathways, from 175 markers of the subset. Pathways are similar to (c). CAR T funcion-irrelevant

pathways such as viral transcription and viral gene expression are disregarded.

It was uncertain whether the high expression of regulatory pathways and genes on no response cells were

due to relatively lower CAR T functions, or whether regulatory activities was truly overexpressed,

possibly defining the unactivated NR clusters as Treg cells. One key regulatory gene, TGFB1, which

produces the protein transforming growth factor beta-1, appeared as a highly differentially expressed

marker of BA (Figure 5a) as well as NR cells. When the overall expression between the 3 types of

samples (CR/NR/HD) was compared, the expression was markedly higher in NR cells (Figure 12a). The

expression levels in the unsupervised clusters of the overall integrated dataset showed a much lower

expression in cluster 3, which was also the cluster with the highest CR/HD proportion (Figure 8b). The

analysis of TGFB1 indicated that the absolute expression levels of regulatory genes were indeed higher in

NR cells compared to CR/HD cells.
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Figure 12: Production of TGFB1 visualized with overall sample types and unsupervised clusters.

(a) TGFB1 expression in overall CR (red), HD (green), and NR (blue) populations through a violin plot

visualization. Expression levels in NR is significantly higher as evident from the width of the violin.

(b) TGFB1 expression in the unsupervised clustering of 13 clusters from the overall integrated data. All clusters

show an expression level of ~1 count, except for cluster 3, which centers around expression 0.

To confirm the immunological findings and correlate gene expression with expression levels of

similar-functioning proteins, ADT analysis was performed on the overall profiles of CR, HD, and NR

samples. The Fas apoptotic protein (CD95) as well as CD28, one involved in apoptotic regulation, were

both expressed higher in NR cells than CR and HD cells (Figure 13). The CD62L protein, found to be a

regulation marker in the HD dataset, was expressed higher on NR cells, while the two activation markers,

HLA-DR and CD69, were higher in CR and HD cells. Thus, NR cells had higher apoptotic regulation and

would be susceptible to a greater induced cell death, inhibiting proliferation.

16



Figure 13: Key ADT markers expressed differentially between CR (red), HD (green), and NR (blue) samples.

Apoptotic markers are the CD95 (Fas) and CD28 proteins. The regulation marker CD62L and activation markers

HLA-DR and CD69 were derived from the results of the healthy donor dataset analysis, where they marked the

differences between BA and CD in HD cells.

DISCUSSION

From the CITE-seq single-cell multiomics data of CAR T cells from healthy donors and no response and

complete remission patients, I analyzed the gene expression and comparison between clusters and patient

responses to reveal the pathways that distinguished a proper response of a CAR T cell in a tumor

microenvironment compared to a malfunctioning one. Even though the CAR engineering was performed

uniformly across all donor and patient cells, cells from no response patients were significantly less

activated under stimulatory conditions.

From the healthy donor patient data, the similar expression levels of CD4 and CD8 across both the

stimulated and the unstimulated subset indicate that either CD4 or CD8 T cells are suitable for becoming

CAR T cells that act efficiently for tumor stimulation. This corresponds with several past literature results

of CAR T composition and ratios of CD4:CD8 (Lee et al. 2018, Turtle et al. 2016), and thus confirmed

that the healthy donor dataset was working correctly and that the technical workflow is sufficient in

analyzing the single cell profiling to come to biologically correct conclusions.
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CAR T cells from healthy donor and complete remission patients were found to have significantly

different signaling pathways from no response patients. Between CR/HD and NR patients, CD clusters

with a high proportion of CR/HD cells showed pathways in known CAR T cells as well as general

immunological cell activities such as activation of T cells, leukocytes, and lymphocytes, triggering

leukocyte and lymphocyte differentiation, cytokine production and response to cytokine stimuli, and the

regulation of various activations and differentiations (Park 2021, Schwab et al. 2020). This also involved

cell-to-cell adhesion, which suggests that the addition of cell surface proteins contributing to adhesion and

enhancing helper functions could be beneficial to overall immunological functions. Furthermore,

pathways involving cell motility and migration were increased, suggesting the importance of rapid

circulation throughout the body (Simula et al. 2022).

Higher cytokine production had a general correlation with better patient response. Cluster 10 of the

stimulated subset of integrated HD/CR/NR data, which had a high NR proportion, showed a substantially

lower expression of CCL3, CCL4, CCL5, XCL1, XCL2, and CCL20, notable cytokine-related

immunological markers. On the other hand, cluster 7 of the basal state subset had high expression in the

first five of those genes and correlated with one of the lowest percentages of NR, the majority being HD

cells. Cluster 11 of the basal subset with high expression of CCL5 in particular had the highest CR

proportion and the lowest NR proportion in BA clusters, indicating that CCL5 could contribute more so

than other cytokines to the regulatory state of CAR T cells in patients. Foeng et al. showed that the CCL2

and CCL5 cytokines were most common in intratumoral T cell trafficking and tumor infiltration, further

confirming these results (Foeng et al. 2022). To further confirm the role of cytokines, in the stimulated

subsets, the clusters with the lowest NR proportion (1, 3, 5, 6, 9) showed high levels of the 6 cytokine

genes compared to other clusters. Most notably, cluster 3 had high levels of CCL3, CCL4, and CCL5,

while clusters 5, 6, and 9 had high levels of XCL1 and XCL2, suggesting the divergence of cytokine

production between different subsets of CAR T cells. The differences in HD and CR proportion sizes

have yet to be investigated but generally show similar patterns when compared to NR proportions.

One of the most notable characteristics of NR cells was the singular cluster in both the stimulated and

basal state subsets that had >75% constituted of NR. This phenomenon can also be observed in the direct

comparison of CR to NR patients before the integration of HD cells. Each of these clusters also showed a

low expression of most key immunological markers, including GZMB, PRF1, TNF, IFNG, IL2, IL13,

CSF2, XCL1, and XCL2. GO pathways showed no particular activities in immunological activities, and

mainly focused on regulatory biological activities such as protein translation and endoplasmic reticulum
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activities of protein localization. The activities of the gene TGFB1 were prominent in NR cells, both in

general and in subtypes such as cluster 3 of the overall integrated dataset. Blocking the transforming

growth factor beta (TGF-β) that comes from TGFB1 has repeatedly been found to be effective in

increasing CAR T cell efficiency against the development of CAR T therapy against solid tumors (Hou et

al. 2018, Tang et al. 2020). The correlation between the reduction in Treg cells and enhanced CAR T cell

functions suggests that the subtype of T cells with high proportions of NR cells are a type of Treg cells

that proliferate more greatly than the other CAR T subtypes and do not add meaningful activities to

therapeutic effects, as they have unchanging activities whether stimulated or not. Knocking out such

regulatory and helper genes may not only provide a better efficacy of CAR T cells in B-ALL, but provide

a key method to unlocking the potential of CAR T in solid tumors.

The role of proliferation of CAR T cells in patient responses extend further than regulatory subtypes of T

cells. In the majority of high CR/HD proportion clusters, GO showed pathways in cell population

proliferation, DNA replication, mitotic cell cycle, and cell division activities, indicating that the

proliferation activities and thus overall number of CAR T cells contribute greatly to the efficacy of

therapy due to their durability and persistence in vivo. Clinical results show that T cell subtypes such as

central memory (Tcm) and stem-like memory (Tscm) T cells result in a greater outcome of therapy

(López-Cantillo et al. 2022).

Moreover, NR clusters tended to show higher susceptibility to apoptosis and cell death activities, meaning

that the more proliferation is inhibited in CAR T cells, the less likely the patient response is to be positive.

The Fas apoptotic protein (CD95) and the apoptotic regulator CD28 were found at a higher expression

level on NR than both CR and HD cells. The Fas protein especially, along with other proteins such as

FasL, DR5, and TRAIL, results in programmed cell death and are an obstacle to the long-term persistence

of CAR T; recombinant Fas proteins have shown to improve CAR T cell apoptosis and CAR activation

(Tschumi et al. 2018). The role of apoptosis in CAR T cells and how to reduce them in an effective

manner to increase CAR T cell survival and proliferation is a further study to be investigated.

CAR T therapy is still undergoing development in its engineering methods and clinical trials, and with the

approved methods of therapy through CD19, approximately 10-20% of B-ALl patients have no response

and nearly 50% have relapse even without tumor adaptive resistance (Sheykhhasan et al. 2022). Because

CAR T therapy can provide a cheaper and more accessible alternative than to other forms of

immunotherapy and overall cancer treatment, by improving the response rate and effectiveness of CAR

engineering, thousands of patients will be able to benefit from high response rate and long-term effects of
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CAR T therapy. By identifying characteristics of healthy to malfunctioning CAR T cells, rather than

putting the focus on CAR engineering, my analysis will contribute to the further honing and genetic

modifications of cellular functions of T cells.
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